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The sorption of gases has recently been thrust into the limelight
as a direct result of current pressing demands for viable gas storage
and separation technologies, especially with regard to the so-called < >
“Hydrogen Economy™ Through the pioneering work mainly of N N
Yaghi and Kitagawa, metal organic frameworks (MOFs) have n’\) @N
become the focus of many research efforts worldwiééthough
some success has been achieved using these types of coordinatio Ag"éF
polymeric materials, the ultimate goals of 6 and 35% by weight ¢ acetonitrile
(wt %) for hydrogen and methane storage, respectively, are still
far from realizatior? The most widely applied method of producing
porous crystals is to assemble a coordination polymeric MOF with
solvent molecules trapped in its lattice and, subsequently, to
extricate the solvent without disrupting the host framework. The
utilization of robustexabidentate metatligand—metal bridges is

Figure 1. Formation of [AgL2](BF4)22CHsCN, where L= 1,4-bis(2-
methylimidazol-1-ylmethyl)benzene.

complexes generally rearrange upon desolvation to form a different,
yet also efficiently packed phadéndeed, with only a few known
exceptiong, rearrangement to achieve close-packing upon solvent
removal is almost always observed for organic molecular crystals,
as well as for metatorganic complexes.Here, we report the
formation of a crystalline solvate by a discrete cyclic dinuclear silver
complex. The rectangular host complexes are stacked to form
channels that entrap acetonitrile guest molecules. Upon removal Figure 2. Perspective view perpendicular to a one-dimensional channel

. . semitransparent yellow surface) defined by a column of cyclic[A+
of the guest, the packing arrangement of the host is preserved, thu omplexes. The complex ions [Aig]?* are shown as capped-sticks, the

yielding a porous lattice capable of absorbing various gases. BF,~ ions as balls-and-sticks, and the acetonitrile molecules are shown in
Slow evaporation of an equimolar solution of AgB&nd the the van der Waals metaphor. Colors: carbon, gray; hydrogen, white;
ditopic ligand 1,4-bis(2-methylimidazol-1-ylmethyl)benz&fie) in nitrogen, dark blue; silver, light blue; boron, pink; fluorine, purple;

acetonitrile (Figure 1) yielded single crystal§ 6uitable for X-ray acetonitrile, green.

diffraction analysi$. The crystallographic study reveals a discrete
rectangular complex composed of two linearly coordinated silver
ions doubly bridged to one another by means of two ligands (Figure
1). The ring-like complexes are stacked along the crystallographic
¢ axis to form one-dimensional channels, as shown in Figure 2.
Acetonitrile solvent molecules occupy the channels, while the BF
anions are situated between adjacent columns of stackedl &g
complexes. Each column is in van der Waals contact with six
neighboring columns (Figure 3) to form a “brick wall” packing
motif as viewed along [001]. This arrangement is stabilized by
intermolecular offsetz---r interactions between imidazole rings

along [010] (interplanar spacing 3.44 A) and benzene rings along Figure 3. Space filling projection showing the packing arrangement of

[100] (interplanar spacingt 3_-52 A). o rectangular [AgL2]2" host complexes to form channels along [001].
Thermogravimetric analysis dfshows that the acetonitrile guest  Colors: carbon, gray; hydrogen, white; nitrogen, dark blue; silver, light

molecules can be removed completely by heating the crystals toblue.

>80°C. Using hot stage microscopy, crystals heated td@B/ere

observed to remain intact and transparent. A crystal thus treated The vacant channels @fare approximately rectangular in cross-

(2) was therefore subjected to single-crystal X-ray anafifsighich section with internal van der Waals dimensions of ca.<4B5 A.
showed that no rearrangement of the host lattice takes place as & he unoccupied space in the crystal is estimated to be approximately
result of thermally induced desolvation. No electron density peaks 22% of the total volumé! Although this value is lower than that
were located within the channels previously occupied by the calculated for many of the vacant MOFs reported to date, it has
acetonitrile guests. been suggested that smaller pore dimensions are desirable in order
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